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• Motivation 

• Comparing DSP and Microcontroller architectures 

• FIR and IIR filter benchmarks 

• Real-world examples 

– 2.1 channel speaker crossover 

– Automotive audio system 

• Conclusion 

 

Overview 
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• Media rich applications and products are 

proliferating 

• Systems currently consist of multiple processors 

– Micros / Application processors – control and UI 

– Graphics processors – video and graphics 

– DSPs – audio processing 

• In some cases they are integrated into a single SOC 

(“System on a Chip”) 

 

• Can the audio processing tasks traditionally handled 

by a dedicated DSP be migrated to a microcontroller 

or an application processor? 

 

Introduction and Motivation 
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+ Multiple memory buses 

+ Single cycle multiply - 
accumulate 

+ Zero-overhead loops 

+ Load and stores in parallel with 
computation 

+ Accumulator with guard bits 

+ Fractional and saturating math 

+ SIMD instructions for parallel 
computation 

+ Barrel shifter 

+ Floating-point hardware 

+ Circular and bit-reversed 
addressing 

 

The Architecture of a DSP 

Figure taken from machinedesign.com 
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― Single memory bus 

― MAC takes 4 to 7 cycles 

― Loops overhead of 3 cycles 

― Load/stores or computation 

― No guard bits 

― Integer math with overflow 

― No SIMD 

― No barrel shifter 

― Floating-point hardware 

― No circular and bit-reversed 

addressing 

 

The Architecture of a Microcontroller 

Figure taken from machinedesign.com 
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Other Noteworthy Differences 

DSPs 

• Large register file 

• Serial ports 

• Sample rate converters 

• Flexible DMA controllers 

• Require ASM programming to 

achieve maximum performance 

• Lower power consumption 

(milliwatt per MIP) 

Microcontrollers 

• Small register file 

• Cached architecture 

• Low power sleep modes 

• Low cost 

• Large number of peripherals 

• Many variants 

• Integrated flash memory 

• Good driver support 
– USB/Ethernet/CAN/Flash/etc 

• Operating systems 

• Many features fully 

programmable from C 

• Low interrupt latency 
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Digital Signal Controller = Microcontroller + DSP features 

+ Multiple memory buses 

+ Single cycle multiply - accumulate 

― Zero-overhead loops 

― Load and stores in parallel with computation 

― Accumulator with guard bits 

+ Fractional and saturating math 

+ SIMD instructions for parallel computation 

― Barrel shifter 

― Circular and bit-reversed addressing 

 

Digital Signal Controllers 

An example is the 

ARM Cortex-M4 

 

Up to 180 MHz 

Floating-point 

USB 

<$3 in volume 

 

Other DSC families 

available from TI, 

Freescale, and 

Microchip 
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Application Processors 

• High-end 

microcontrollers 

• Clock speeds up to 2 GHz 

• High level of integration 
– Multiple processor cores 

– Graphics coprocessor 

– Networking 

– USB 

– Security features 

• Examples 
– ARM Cortex-A processor 

family 

– Intel Atom 

• Used in 
– Smart phones 

– iPad/tablets 

– Set top boxes 

– Automotive “head units” 
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• General purpose SIMD engine 

targeted at audio and video 

processing 

• Large register file viewed as 

–  32 x 64-bit registers 

– 16 x 128-bit registers 

• 2- or 4-way floating-point SIMD 

• Programmable using C intrinsics or 

ASM 

ARM Cortex-A NEON Technology 
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• DSPs are adding peripherals and increasing 

software support 

– Analog Devices Blackfin 

– TI C5000 

• Microcontrollers and application processors are 

adding DSP instructions 

– ARM Cortex-M4 = M3 + DSP instructions 

– ARM Cortex-A8/A9 have NEON 

• Which device will win out?   

• Is it easier to retrofit a DSP or a microcontroller? 

Collision Course 
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Who Will Win? 

For DSPs to win they need: 

• Lower power sleep modes 

• Lower cost 

• Larger number of peripherals 

• More variants 

• Integrated flash memory 

• Good driver support 

– USB/Ethernet/CAN/Flash/etc 

• Operating systems 

 

For Micros to win they need: 

• Better power consumption 

• Audio specific peripherals 

– Serial ports 

– Sample rate converters 

– Flexible DMA controllers 

• High performance arithmetic 
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FIR Filter 

• Commonly used in 

– Audio processing 

– Video processing 

– Data smoothing 

– Communications 

– Control 

• Benchmark DSP Algorithm 

– MACs 

– High memory bandwidth 

– Looping 

 

1z 1z 1z 1z

 0h  1h  2h  3h  4h

 nx

 ny
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• Using a FIFO on a sample-by-sample basis is very 

inefficient 

• Avoid data movement and use a circular buffer instead 

Circular Addressing 

h[0]h[1]h[2]h[3]h[4]h[5]h[6]

x[n]x[n-1]x[n-2]x[n-3] x[n-4]x[n-5]x[n-6]

coeffIndex

stateIndex

x[n]

State variables use a 

circular buffer 

Coefficients use linear 

addressing 
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FIR Implementation – Simple C 

for(sample=0;sample<blockSize;sample++) 

{ 

  // Copy the new sample in 

  state[stateIndex++] = inPtr[sample] 

  if (stateIndex >= N) 

    stateIndex = 0; 

  

  sum = 0.0f; 

  for(i=0;i<N;i++) 

    { 

      sum += state[stateIndex++] * coeffs[N-i]; 

      if (stateIndex >= N) 

 stateIndex = 0; 

    } 

  outPtr[sample] = sum; 

} 

 

Code operates on a 

block of data 

Inner loop is over N filter coefficients 
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• Executes in a single cycle! 

– Two data fetches 

– Multiplication 

– Addition 

– Circular addressing 

– Pointer updates 

– Looping 

 

FIR Implementation – DSP ASM 

  lcntr = r2, do VEC_FIR_TapLoop until lce; 

VEC_FIR_TapLoop: 

  f12=f0*f4, f8=f8+f12, f4=dm(i1,m4), f0=pm(i12,m12); 
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• Missing features 
– Multiple memory buses 

– Computation in parallel with memory accesses 

– Zero overhead loop 

– Circular memory addressing 

• Work arounds 
– Cache state variables and coefficients and 

compute 4 outputs in parallel 

– Manually unroll the inner loop by a factor of 4 

– Use a FIFO but shift in data one block at a time 

– (Similar techniques apply to the Cortex-A8) 

 

FIR Implementation – Cortex-M4 
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FIR Filter Benchmarks 

DSP Cortex-M4 Cortex-A8

Standard C 10386 46996 111721

Tuned C 17704 10330

Assembly 2974 13719 4238

Measured Clock Cycles

Standard C – Start with the textbook implementation of an algorithm and allow the C 

compiler to optimize as best as it can. 

 

Tuned C – Hand optimize the code as best as possible while remaining in C.  This 

involves loop unrolling, caching of variables, and using intrinsic functions. 

 

Assembly – Get the absolute best performance possible using assembly coding. 

 

64-point filter 

64-sample block size 

 

 

DSP and Cortex-A8 rely 

on SIMD 

Cortex-M4 FIR 

library available 

from ARM 

(CMSIS DSP 

Library) 

 

Cortex-A8 FIR 

library  will be 

available from 

DSP Concepts 
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• Commonly used in audio: 

– Tone controls 

– Graphic EQ 

– Loudness compensation 

– Crossover filters 

– Etc. 

• Different structures have 

advantages 

– Direct Form 1 – better fixed-

point behavior 

– Direct Form 2 – less memory 

Biquad Filter 

z -1

z -1

z -1

z -1

x[n]

x[n-1]

x[n-2]

y[n]

y[n-1]

y[n-2]

b0

b2

b1 -a1

-a2

z -1

z -1

x[n]
b0

b2

b1-a1

-a2

y[n]

Direct Form 1 

Direct Form 2 
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Biquad Implementation – Simple C 

  // b0, b1, b2, a1, and a2 are the filter coefficients. 

  // a1 and a2 are negated. 

  // wNm1 and wNm2 represent the two state variables. 

 

  for (sample = 0; sample < blockSize; sample++) 

    { 

      wN = a1*wNm1 + a2*wNm2 + inPtr[sample] 

      outPtr[sample] =  b0*wN + b1*wNm1 + b2*wNm2; 

      wNm2=wNm1; 

      wNm1=wN; 

    } 

 

  // Persist state variables for next call 

  state[0] = wNm1; 

  state[1] = wNm2; 

Code operates on 

a block of data 

Inner loop has 5 multiplications 
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• Ideal!  Inner loop requires 

5 instructions 

• With SIMD can compute 

two filters in parallel 

 

 

FIR Implementation – DSP ASM 

lcntr=r1, do _sampleLoopEnd until lce; 

 

// r15 = a2 * w[n-2].  r8 = src[i] 

f15=f0*f11,r8=dm(i4,m4); 

 

// r8 = a1 * w[n-1].  r15 = a2 * w[n-2] + src[i].   

// dst[i-1] = result 

f8=f3*f5,f15=f8+f15,pm(i12,m12)=r12; 

 

// r10 = b2 * w[n-2].   

// r2 = a1 * w[n-1] + a2 * w[n-2] + src[i] (= w[n]) 

// w[n-2] = w[n-1] 

f10=f0*f6,f2=f8+f15,r0=r3; 

                                        

// r8 = b0 * w[n]. r15 = b2 * w[n-2] + b1 * w[n-1] 

// w[n-1] = w[n] 

f8=f2*f7,f15=f10+f14,r3=r2; 

 

_sampleLoopEnd: 

//r14 = b1 * w[n-1], (new value for next loop iteration) 

f14=f3*f4,f12=f8+f15; 
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• Missing features 

– Zero overhead loop 

• Work arounds 

– Manually unroll the inner loop by a factor of 4 

– (Similar techniques apply to the Cortex-A8) 

 

Biquad Implementation – Cortex-M4 
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Biquad Filter Benchmarks 

DSP Cortex-M4 Cortex-A8

Standard C 2902 5503 18060

Tuned C 4812 4896

Assembly 1440 3840 2012

Measured Clock Cycles 64 sample block size 

Cascade of 4 filters 

 

4 x 5 x 64 = 1280 MACs 

 

No SIMD used in 

benchmarks 

Standard C – Start with the textbook implementation of an algorithm and allow the C 

compiler to optimize as best as it can. 

 

Tuned C – Hand optimize the code as best as possible while remaining in C.  This 

involves loop unrolling, caching of variables, and using intrinsic functions. 

 

Assembly – Get the absolute best performance possible using assembly coding. 
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• Compared two different systems 

– 2.1 channel loudspeaker processing 

– 13 channel automotive system 

• Processors compared 

– Cortex-M4F.  NXP LPC 43xx.  180 MHz 

– Cortex-A9.  TI OMAP 4430.  1 GHz 

– 32-bit floating-point DSP.  400 MHz 

Real World Examples 
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Benchmarking With Audio Weaver 

Complete SW solution for audio products 

• Large library of optimized audio 

modules 

• Supports SHARC, Blackfin, Cortex-M4, 

and Cortex-A8/9 

• Built upon MATLAB 

• Graphical drag-and-drop editor 

• Real-time tuning 

• Highly optimized for MIPs and memory 

usage 
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2.1 Channel Loudspeaker Processing 

• Stereo multimedia loudspeakers 

– USB or analog inputs 

– 2.0 or 2.1 outputs 

• Multimedia / gaming headphones 

– USB or analog input 

– Boom mic 

– Stereo in / stereo out 

• iPod docking stations 

– USB or analog input 

– 2.0 or 2.1 or more outputs 

 Benchmarking results apply 

to all of these product 

categories 
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Signal Flow 

Top-level system 

Bass subsystem 

Tweeter subsystem 
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Loudspeaker Processing Results 
Module Name MIPS SIMD MIPs SIMD

SYS_toFloat 0.28 No 1.25 N/A

BassTone 0.59 Yes 2.72 N/A

TrebleTone 0.59 Yes 2.09 N/A

VolumeControl 0.68 N/A 2.79 N/A

Crossover 2.75 Yes 10.41 N/A

BassProcessing.BassAdder 0.72 Yes 2.02 N/A

BassProcessing.BassFilt 1.54 No 5.78 N/A

BassProcessing.BassGain 0.49 No 1.35 N/A

BassProcessing.BassLimiter 3.03 N/A 12.79 N/A

BassProcessing.BassDelay 0.3 N/A 1.41 N/A

BassProcessing.Interleave1 0.52 N/A 0.74 N/A

TweeterProcessing.TweeterFilter 1.65 Yes 11.87 N/A

TweeterProcessing.TweeterGain 0.45 Yes 2.14 N/A

TweeterProcessing.TweeterLimiter 6.87 N/A 27.42 N/A

TweeterProcessing.TweeterDelay 0.52 N/A 2.28 N/A

ListenMux 0.62 N/A 1.52 N/A

SYS_toFract 0.29 No 3.45 N/A

Total MIPs 21.89 92.03

DSP Cortex-M4
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Premium Automotive System 

• 16 input and 13 output channels 

• 10 band graphic equalizer 

• Spectrum analyzer 

• Volume control with Fletcher-Munson 

compensation 

• 6 announcement channels with signal dependent 

ducking  

• Speed dependent equalization and volume control 

• Over 165 Biquads for loudspeaker equalization 

• Compressors, limiters, and delays on all 

loudspeaker channels. 

• Test signal generation for in car diagnostics 

• Over 300 individual audio modules! 

 

Representative of a 

production automotive audio 

system. 
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Automotive Signal Flow 
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Automotive Benchmarking Results 

Cortex A9    DSP 

DSP 

• 32 sample block size 

• 72% = 288 MHz 

 

Cortex-A9 

• 256 sample block size 

• 53% = 530 MHz 
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Conclusion 

• DSPs and microcontrollers are on a collision course 

• Through careful programming techniques you can significantly 

increase the processing throughput of microcontrollers 

– Digital signal controllers (e.g., Cortex-M4) are capable of entry-level 2 

channel audio processing 

– High-end application processors (e.g., Cortex-A8 / A9) are capable of 

multichannel premium audio processing 

• Prediction 

– Microcontrollers will continue to add specialized audio peripherals in order to 

gain a foothold in the market 

– DSPs will be pushed out of high volume consumer sockets and be reserved for 

specialized applications 
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Thank You! 


