
Copyright 2011 DSP Concepts LLC

Real-time Audio Processing Capabilities of

Microcontrollers, Application Processors, and DSPs

Paul Beckmann

DSP Concepts, LLC

2 Copyright 2011 DSP Concepts LLC October 21, 2011

• Motivation

• Comparing DSP and Microcontroller architectures

• FIR and IIR filter benchmarks

• Real-world examples

– 2.1 channel speaker crossover

– Automotive audio system

• Conclusion

Overview

3 Copyright 2011 DSP Concepts LLC October 21, 2011

• Media rich applications and products are

proliferating

• Systems currently consist of multiple processors

– Micros / Application processors – control and UI

– Graphics processors – video and graphics

– DSPs – audio processing

• In some cases they are integrated into a single SOC

(“System on a Chip”)

• Can the audio processing tasks traditionally handled

by a dedicated DSP be migrated to a microcontroller

or an application processor?

Introduction and Motivation

4 Copyright 2011 DSP Concepts LLC October 21, 2011

+ Multiple memory buses

+ Single cycle multiply -
accumulate

+ Zero-overhead loops

+ Load and stores in parallel with
computation

+ Accumulator with guard bits

+ Fractional and saturating math

+ SIMD instructions for parallel
computation

+ Barrel shifter

+ Floating-point hardware

+ Circular and bit-reversed
addressing

The Architecture of a DSP

Figure taken from machinedesign.com

5 Copyright 2011 DSP Concepts LLC October 21, 2011

― Single memory bus

― MAC takes 4 to 7 cycles

― Loops overhead of 3 cycles

― Load/stores or computation

― No guard bits

― Integer math with overflow

― No SIMD

― No barrel shifter

― Floating-point hardware

― No circular and bit-reversed

addressing

The Architecture of a Microcontroller

Figure taken from machinedesign.com

6 Copyright 2011 DSP Concepts LLC October 21, 2011

Other Noteworthy Differences

DSPs

• Large register file

• Serial ports

• Sample rate converters

• Flexible DMA controllers

• Require ASM programming to

achieve maximum performance

• Lower power consumption

(milliwatt per MIP)

Microcontrollers

• Small register file

• Cached architecture

• Low power sleep modes

• Low cost

• Large number of peripherals

• Many variants

• Integrated flash memory

• Good driver support
– USB/Ethernet/CAN/Flash/etc

• Operating systems

• Many features fully

programmable from C

• Low interrupt latency

7 Copyright 2011 DSP Concepts LLC October 21, 2011

Digital Signal Controller = Microcontroller + DSP features

+ Multiple memory buses

+ Single cycle multiply - accumulate

― Zero-overhead loops

― Load and stores in parallel with computation

― Accumulator with guard bits

+ Fractional and saturating math

+ SIMD instructions for parallel computation

― Barrel shifter

― Circular and bit-reversed addressing

Digital Signal Controllers

An example is the

ARM Cortex-M4

Up to 180 MHz

Floating-point

USB

<$3 in volume

Other DSC families

available from TI,

Freescale, and

Microchip

8 Copyright 2011 DSP Concepts LLC October 21, 2011

Application Processors

• High-end

microcontrollers

• Clock speeds up to 2 GHz

• High level of integration
– Multiple processor cores

– Graphics coprocessor

– Networking

– USB

– Security features

• Examples
– ARM Cortex-A processor

family

– Intel Atom

• Used in
– Smart phones

– iPad/tablets

– Set top boxes

– Automotive “head units”

9 Copyright 2011 DSP Concepts LLC October 21, 2011

• General purpose SIMD engine

targeted at audio and video

processing

• Large register file viewed as

– 32 x 64-bit registers

– 16 x 128-bit registers

• 2- or 4-way floating-point SIMD

• Programmable using C intrinsics or

ASM

ARM Cortex-A NEON Technology

10 Copyright 2011 DSP Concepts LLC October 21, 2011

• DSPs are adding peripherals and increasing

software support

– Analog Devices Blackfin

– TI C5000

• Microcontrollers and application processors are

adding DSP instructions

– ARM Cortex-M4 = M3 + DSP instructions

– ARM Cortex-A8/A9 have NEON

• Which device will win out?

• Is it easier to retrofit a DSP or a microcontroller?

Collision Course

11 Copyright 2011 DSP Concepts LLC October 21, 2011

Who Will Win?

For DSPs to win they need:

• Lower power sleep modes

• Lower cost

• Larger number of peripherals

• More variants

• Integrated flash memory

• Good driver support

– USB/Ethernet/CAN/Flash/etc

• Operating systems

For Micros to win they need:

• Better power consumption

• Audio specific peripherals

– Serial ports

– Sample rate converters

– Flexible DMA controllers

• High performance arithmetic

12 Copyright 2011 DSP Concepts LLC October 21, 2011

FIR Filter

• Commonly used in

– Audio processing

– Video processing

– Data smoothing

– Communications

– Control

• Benchmark DSP Algorithm

– MACs

– High memory bandwidth

– Looping

1z 1z 1z 1z

 0h  1h  2h  3h  4h

 nx

 ny

13 Copyright 2011 DSP Concepts LLC October 21, 2011

• Using a FIFO on a sample-by-sample basis is very

inefficient

• Avoid data movement and use a circular buffer instead

Circular Addressing

h[0]h[1]h[2]h[3]h[4]h[5]h[6]

x[n]x[n-1]x[n-2]x[n-3] x[n-4]x[n-5]x[n-6]

coeffIndex

stateIndex

x[n]

State variables use a

circular buffer

Coefficients use linear

addressing

14 Copyright 2011 DSP Concepts LLC October 21, 2011

FIR Implementation – Simple C

for(sample=0;sample<blockSize;sample++)

{

 // Copy the new sample in

 state[stateIndex++] = inPtr[sample]

 if (stateIndex >= N)

 stateIndex = 0;

 sum = 0.0f;

 for(i=0;i<N;i++)

 {

 sum += state[stateIndex++] * coeffs[N-i];

 if (stateIndex >= N)

 stateIndex = 0;

 }

 outPtr[sample] = sum;

}

Code operates on a

block of data

Inner loop is over N filter coefficients

15 Copyright 2011 DSP Concepts LLC October 21, 2011

• Executes in a single cycle!

– Two data fetches

– Multiplication

– Addition

– Circular addressing

– Pointer updates

– Looping

FIR Implementation – DSP ASM

 lcntr = r2, do VEC_FIR_TapLoop until lce;

VEC_FIR_TapLoop:

 f12=f0*f4, f8=f8+f12, f4=dm(i1,m4), f0=pm(i12,m12);

16 Copyright 2011 DSP Concepts LLC October 21, 2011

• Missing features
– Multiple memory buses

– Computation in parallel with memory accesses

– Zero overhead loop

– Circular memory addressing

• Work arounds
– Cache state variables and coefficients and

compute 4 outputs in parallel

– Manually unroll the inner loop by a factor of 4

– Use a FIFO but shift in data one block at a time

– (Similar techniques apply to the Cortex-A8)

FIR Implementation – Cortex-M4

17 Copyright 2011 DSP Concepts LLC October 21, 2011

FIR Filter Benchmarks

DSP Cortex-M4 Cortex-A8

Standard C 10386 46996 111721

Tuned C 17704 10330

Assembly 2974 13719 4238

Measured Clock Cycles

Standard C – Start with the textbook implementation of an algorithm and allow the C

compiler to optimize as best as it can.

Tuned C – Hand optimize the code as best as possible while remaining in C. This

involves loop unrolling, caching of variables, and using intrinsic functions.

Assembly – Get the absolute best performance possible using assembly coding.

64-point filter

64-sample block size

DSP and Cortex-A8 rely

on SIMD

Cortex-M4 FIR

library available

from ARM

(CMSIS DSP

Library)

Cortex-A8 FIR

library will be

available from

DSP Concepts

18 Copyright 2011 DSP Concepts LLC October 21, 2011

• Commonly used in audio:

– Tone controls

– Graphic EQ

– Loudness compensation

– Crossover filters

– Etc.

• Different structures have

advantages

– Direct Form 1 – better fixed-

point behavior

– Direct Form 2 – less memory

Biquad Filter

z -1

z -1

z -1

z -1

x[n]

x[n-1]

x[n-2]

y[n]

y[n-1]

y[n-2]

b0

b2

b1 -a1

-a2

z -1

z -1

x[n]
b0

b2

b1-a1

-a2

y[n]

Direct Form 1

Direct Form 2

19 Copyright 2011 DSP Concepts LLC October 21, 2011

Biquad Implementation – Simple C

 // b0, b1, b2, a1, and a2 are the filter coefficients.

 // a1 and a2 are negated.

 // wNm1 and wNm2 represent the two state variables.

 for (sample = 0; sample < blockSize; sample++)

 {

 wN = a1*wNm1 + a2*wNm2 + inPtr[sample]

 outPtr[sample] = b0*wN + b1*wNm1 + b2*wNm2;

 wNm2=wNm1;

 wNm1=wN;

 }

 // Persist state variables for next call

 state[0] = wNm1;

 state[1] = wNm2;

Code operates on

a block of data

Inner loop has 5 multiplications

20 Copyright 2011 DSP Concepts LLC October 21, 2011

• Ideal! Inner loop requires

5 instructions

• With SIMD can compute

two filters in parallel

FIR Implementation – DSP ASM

lcntr=r1, do _sampleLoopEnd until lce;

// r15 = a2 * w[n-2]. r8 = src[i]

f15=f0*f11,r8=dm(i4,m4);

// r8 = a1 * w[n-1]. r15 = a2 * w[n-2] + src[i].

// dst[i-1] = result

f8=f3*f5,f15=f8+f15,pm(i12,m12)=r12;

// r10 = b2 * w[n-2].

// r2 = a1 * w[n-1] + a2 * w[n-2] + src[i] (= w[n])

// w[n-2] = w[n-1]

f10=f0*f6,f2=f8+f15,r0=r3;

// r8 = b0 * w[n]. r15 = b2 * w[n-2] + b1 * w[n-1]

// w[n-1] = w[n]

f8=f2*f7,f15=f10+f14,r3=r2;

_sampleLoopEnd:

//r14 = b1 * w[n-1], (new value for next loop iteration)

f14=f3*f4,f12=f8+f15;

21 Copyright 2011 DSP Concepts LLC October 21, 2011

• Missing features

– Zero overhead loop

• Work arounds

– Manually unroll the inner loop by a factor of 4

– (Similar techniques apply to the Cortex-A8)

Biquad Implementation – Cortex-M4

22 Copyright 2011 DSP Concepts LLC October 21, 2011

Biquad Filter Benchmarks

DSP Cortex-M4 Cortex-A8

Standard C 2902 5503 18060

Tuned C 4812 4896

Assembly 1440 3840 2012

Measured Clock Cycles 64 sample block size

Cascade of 4 filters

4 x 5 x 64 = 1280 MACs

No SIMD used in

benchmarks

Standard C – Start with the textbook implementation of an algorithm and allow the C

compiler to optimize as best as it can.

Tuned C – Hand optimize the code as best as possible while remaining in C. This

involves loop unrolling, caching of variables, and using intrinsic functions.

Assembly – Get the absolute best performance possible using assembly coding.

23 Copyright 2011 DSP Concepts LLC October 21, 2011

• Compared two different systems

– 2.1 channel loudspeaker processing

– 13 channel automotive system

• Processors compared

– Cortex-M4F. NXP LPC 43xx. 180 MHz

– Cortex-A9. TI OMAP 4430. 1 GHz

– 32-bit floating-point DSP. 400 MHz

Real World Examples

24 Copyright 2011 DSP Concepts LLC October 21, 2011

Benchmarking With Audio Weaver

Complete SW solution for audio products

• Large library of optimized audio

modules

• Supports SHARC, Blackfin, Cortex-M4,

and Cortex-A8/9

• Built upon MATLAB

• Graphical drag-and-drop editor

• Real-time tuning

• Highly optimized for MIPs and memory

usage

25 Copyright 2011 DSP Concepts LLC October 21, 2011

2.1 Channel Loudspeaker Processing

• Stereo multimedia loudspeakers

– USB or analog inputs

– 2.0 or 2.1 outputs

• Multimedia / gaming headphones

– USB or analog input

– Boom mic

– Stereo in / stereo out

• iPod docking stations

– USB or analog input

– 2.0 or 2.1 or more outputs

 Benchmarking results apply

to all of these product

categories

26 Copyright 2011 DSP Concepts LLC October 21, 2011

Signal Flow

Top-level system

Bass subsystem

Tweeter subsystem

27 Copyright 2011 DSP Concepts LLC October 21, 2011

Loudspeaker Processing Results
Module Name MIPS SIMD MIPs SIMD

SYS_toFloat 0.28 No 1.25 N/A

BassTone 0.59 Yes 2.72 N/A

TrebleTone 0.59 Yes 2.09 N/A

VolumeControl 0.68 N/A 2.79 N/A

Crossover 2.75 Yes 10.41 N/A

BassProcessing.BassAdder 0.72 Yes 2.02 N/A

BassProcessing.BassFilt 1.54 No 5.78 N/A

BassProcessing.BassGain 0.49 No 1.35 N/A

BassProcessing.BassLimiter 3.03 N/A 12.79 N/A

BassProcessing.BassDelay 0.3 N/A 1.41 N/A

BassProcessing.Interleave1 0.52 N/A 0.74 N/A

TweeterProcessing.TweeterFilter 1.65 Yes 11.87 N/A

TweeterProcessing.TweeterGain 0.45 Yes 2.14 N/A

TweeterProcessing.TweeterLimiter 6.87 N/A 27.42 N/A

TweeterProcessing.TweeterDelay 0.52 N/A 2.28 N/A

ListenMux 0.62 N/A 1.52 N/A

SYS_toFract 0.29 No 3.45 N/A

Total MIPs 21.89 92.03

DSP Cortex-M4

28 Copyright 2011 DSP Concepts LLC October 21, 2011

Premium Automotive System

• 16 input and 13 output channels

• 10 band graphic equalizer

• Spectrum analyzer

• Volume control with Fletcher-Munson

compensation

• 6 announcement channels with signal dependent

ducking

• Speed dependent equalization and volume control

• Over 165 Biquads for loudspeaker equalization

• Compressors, limiters, and delays on all

loudspeaker channels.

• Test signal generation for in car diagnostics

• Over 300 individual audio modules!

Representative of a

production automotive audio

system.

29 Copyright 2011 DSP Concepts LLC October 21, 2011

Automotive Signal Flow

30 Copyright 2011 DSP Concepts LLC October 21, 2011

Automotive Benchmarking Results

Cortex A9 DSP

DSP

• 32 sample block size

• 72% = 288 MHz

Cortex-A9

• 256 sample block size

• 53% = 530 MHz

31 Copyright 2011 DSP Concepts LLC October 21, 2011

Conclusion

• DSPs and microcontrollers are on a collision course

• Through careful programming techniques you can significantly

increase the processing throughput of microcontrollers

– Digital signal controllers (e.g., Cortex-M4) are capable of entry-level 2

channel audio processing

– High-end application processors (e.g., Cortex-A8 / A9) are capable of

multichannel premium audio processing

• Prediction

– Microcontrollers will continue to add specialized audio peripherals in order to

gain a foothold in the market

– DSPs will be pushed out of high volume consumer sockets and be reserved for

specialized applications

Copyright 2011 DSP Concepts LLC

Thank You!

